
Locality-Adaptive Parallel Hash Joins
using Hardware Transactional Memory

Anil Shanbhag, Holger Pirk, and Sam Madden

MIT CSAIL, Cambridge, USA
{anil,holger,madden}@csail.mit.edu

Abstract. Previous work [1] has claimed that the best performing im-
plementation of in-memory hash joins is based on (radix-)partitioning
of the build-side input. Indeed, despite the overhead of partitioning,
the benefits from increased cache-locality and synchronization free par-
allelism in the build-phase outweigh the costs when the input data is
randomly ordered. However, many datasets already exhibit significant
spatial locality (i.e., non-randomness) due to the way data items en-
ter the database: through periodic ETL or trickle loaded in the form of
transactions. In such cases, the first benefit of partitioning — increased
locality — is largely irrelevant. In this paper, we demonstrate how hard-
ware transactional memory (HTM) can render the other benefit, freedom
from synchronization, irrelevant as well.
Specifically, using careful analysis and engineering, we develop an adap-
tive hash join implementation that outperforms parallel radix-partitioned
hash joins as well as sort-merge joins on data with high spatial locality.
In addition, we show how, through lightweight (less than 1% overhead)
runtime monitoring of the transaction abort rate, our implementation
can detect inputs with low spatial locality and dynamically fall back to
radix-partitioning of the build-side input. The result is a hash join im-
plementation that is more than 3 times faster than the state-of-the-art
on high-locality data and never more than 1% slower.

1 Introduction

As the clock rate of processor cores has stagnated, parallelization has become
the primary means to saturate the increasing memory bandwidth of modern
computers. Fortunately, in the field of data management, many problems have
efficient data-parallel solutions. In particular analytical queries can often satu-
rate the bandwidth using horizontal partitioning of the input and parallelized
computation by different cores on each partition, followed by merging of results.

This approach works particularly well, when the result is small and the merge
trivial, as in operations such as grouped aggregation with few groups.

When the result is large, as, e.g., in the case of hash joins the balance shifts:
the overhead of partitioning and/or merging may well become the most expensive
step. One way to avoid this overhead is to update the hash table in-place. Doing
so requires the use of locks or atomic instructions during inserts, which, unfor-
tunately, also introduces significant overhead. Which of these two approaches is

2 Anil Shanbhag, Holger Pirk, and Sam Madden

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Shuffle Window Size

26

27

28

29

210

211

T
im

e
 i
n
 m

s

Atomic

PRJ

NoCC

MemCopy

Fig. 1: Sharing vs. Partitioning in Hash-Building

better is not immediately evident and depends on spatial locality in the under-
lying data.

Such locality may stem from many real-world effects such as, a) periodic
bulk updates (common in data warehouses) which create locality in date at-
tributes or an attribute that is correlated with the load order (e.g., physical
location), b) trickle loading through transactions in OLTP systems which also
creates locality in date columns, c) automatically assigned IDs which are often
monotonically increasing counters or d) the occurence of temporarily hot items
(e.g., star wars action figures before movie releases). In fact, spatial locality,
is one of the most commonly exploited aspects of code and data in computer
architecture design.

To illustrate the relative costs of these two approaches depending on the
degree of spatial locality, we compared a state-of-the-art, hand-optimized radix-
based hash-building phase [1] to an implementation using a shared hash table
with linear probing, that is protected using atomic instructions (both implemen-
tations use identity hashing). To isolate the effects of insert locality, the input
data keys are unique (from 1 to 227) but (knuth-)shuffled within a sliding window
(the authors of [1] study the case of fully shuffled data, i.e., window size equal to
input data size). By varying the size of the window, we can study the sensitiv-
ity to locality in the input data. Figure 1 shows that for small shuffle windows,
the shared hash table approach using atomic instructions (“Atomic”) performs
slightly better than the radix-based partitioning approach (“PRJ”). For larger
shuffle windows, we observe the typical effects of poor cache locality: a staircase
like pattern that exposes the sizes of the CPU’s caches. The (radix-)partitioned
implementation is robust against poor locality because the partitioning creates
locality using a hardware-conscious implementation.

However, neither implementation performs close to the memory bandwidth,
which gives hope for an even faster implementation. To illustrate this, we im-
plemented a third variant: insert values into the shared hash table without pro-
tecting the buckets (“NoCC”). Since the values are unique and there are no
collisions, this implementation yields the correct result in this case (although,

Locality-Adaptive Parallel Hash Joins using HTM 3

of course, this would not be true in general). The graph shows that this imple-
mentation outperforms the others by more than a factor 3. NoCC comes very
close to the time taken by memcopy to write the same amount of data. While
this illustrates the overhead of the existing approaches, unfortunately, it is not
easily generalizable to cases in which there are conflicts.

Fortunately, there is a third technique that can achieve correctness and per-
formance close to the “NoCC” approach by exploiting the hardware transactional
memory (HTM) features in modern (Intel) processors (and, hopefully, AMD
soon). In this paper, we explore the potential of this (relatively new) technology
for the purpose of parallel hash-joins. In particular:

– We extensively study the effect of locality and transaction size on the per-
formance of HTM-protected parallel hash-building.

– We devise a hash-building technique that dynamically balances the per-
transaction overhead and the abort rate that comes with larger transactions.

– We use the number of aborted transactions as an indicator of poor locality
allowing us to adaptively fall back to the partitioning implementation [1]
when appropriate.

This results in a hash join implementation that outperforms existing ones by
about a factor 3 when spatial locality in the input is high and never performs
significantly (i.e., more than 1 percent) worse than the state of the art.

We structured the rest of this paper as follows: in Section 2, we discuss prim-
itives to ensure memory consistency. In Section 3, we present the current state of
the art in parallel hash joins. In Section 4, we develop our approach to parallel
hash joins by step-by-step analyzing and addressing the relevant bottlenecks.
This section also contains our evaluation. We conclude in Section 5.

2 Synchronization Primitives

Building a hash table in parallel involves concurrent inserts into to the table. In
this section, we briefly review the different means used to ensure correct results:
transactional memory, atomic instructions and input partitioning.

2.1 Transactional Memory

The key idea of a transaction is that multiple operations can be combined into
a unit that is executed atomically and in isolation from others. Multiple trans-
actions can be executed concurrently as long as they affect different objects -
otherwise one of the transactions fails. Transactional memory is the application
of this concept to the reading and writing of a system’s memory, thus provid-
ing an alternative to fine-grained locking which is more expensive and prone to
deadlocks.

The concept of Transactional Memory existed for a long time [4]. Shavit and
Touitou [12] are credited for the first Software Transactional Memory(STM)

4 Anil Shanbhag, Holger Pirk, and Sam Madden

proposal. Due to entirely software controlled validation overhead, STM causes
significant slowdown during execution and found little resonance in the database
systems community. Only recently hardware vendors, such as Intel [14] and IBM
[5] realized transactional memory support in hardware (HTM).

While IBM relies on dedicated HTM components, Intel extended the CPU’s
cache-coherence infrastructure, based on the well known MESI protocol [3], to
enable HTM. In MESI, each cache line can be in one of the four states: modified,
exclusive, shared or invalid. Different caches are kept in-sync by snooping each
other’s load and store requests. For example, when a core updates a cache line
which is also present on other caches in shared state, the local state is updated
to modified and other caches update their state for the cache line to invalid.
The key idea used to implement HTM in Haswell is to use the L1 cache as a
buffer for executing transactions. All the updates made by the transaction hap-
pen locally in the L1 cache and the changes are propagated to main memory
only if the transaction successfully commits. Since the cache coherence proto-
col is an integral part of multicore CPUs and commits/aborts require no extra
communication across cores, the transactional execution has very little overhead.

The downside of using HTM in Haswell is that the transaction size is limited
to size of L1 cache. Even though this limitation imposes constraints on the type
of transactions that can be executed, it has caught the attention of database
researchers due to its low overhead. The HTM support has been used to imple-
ment database transactions in in-memory databases [7, 13]. To the best of our
knowledge, ours is the first work that explores using HTM for adaptive parallel
hash-building in hash joins.

2.2 Atomic Instructions

Another means to provide mutual exclusion without using a lock is using atomic
instructions. Atomic instructions allow the programmer to concurrently access
and update variables of basic data types. Like HTM, atomic instructions rely on
the MESI cache coherence protocol to provide atomicity and isolation. When a
core wishes to read a variable, the corresponding cache line is loaded in shared
mode. On a store request, the core sets the cache line to modified and the
cache line gets invalidated on the other cores. A more expensive operation like
compare-and-swap requires loading the cache line as exclusive before comparing
and swapping.

Spinlocks are implemented using atomic instructions and require one atomic
operation to set the lock variable and one store to update the variable. Since join
columns are often integers or dictionary-encoded strings, atomic instructions can
be used to directly update the hash table entries, making it much faster than
using spinlocks in low-contention scenarios.

2.3 Partitioning

Consistency primitives are needed in the event of concurrent data access to the
same address. An alternative approach is to partition the input such that no

Locality-Adaptive Parallel Hash Joins using HTM 5

such conflicts arise. While partitioning itself can be expensive, there is no need
for synchronization in the processing phase. In particular for the construction of
hashes, this technique has been applied to great effect.

3 State-of-the-Art Hash-Building

One of the fundamental differences when comparing a database’s hash-table
requirements to those of generic hash-tables implementations stems from the
bulk-processing nature of database query processing: where generic hash-tables
have to guarantee consistent reads after every insert, database query processing
usually only requires consistency at the end of the build process. For that reason,
few databases incorporate off-the-shelf hash-table implementations.

Consequently, hash building has been extensively studied in the database
literature in the context of hash joins. Two main lines of thought exist: the first
argues that the best performance can be achieved by using a hardware-conscious
(radix) partitioning to minimize cache misses during the build-phase [6]. The
second approach holds that a hash-build implementation can be efficient by
using a single shared hash table across threads and synchronizing using locks [2].
Through careful evaluation, Balkesen et al. [1] showed that the radix partitioning
approach performs significantly better than the shared hash table approach for
fully shuffled data. Since this approach is the current state-of-the-art (and also
our prime competitor), we discuss it in more detail in the following.

3.1 Radix Partitioned Hash Joins

The main insight motivating radix partitioning based hash-building is that when
the hash table is larger than the cache size, almost every insert into the hash table
causes a cache miss. This can be avoided by pre-partitioning the data using an
approximation of the hash-function and building a hash-table per partition, thus
improving insert locality. Since the partitions are filled sequentially, the memory
access locality in the partitioning phase is improved. Manegold et al. [9] noted
that since each partition ends up residing on a different memory page, having a
very high fanout (= inputSize/L1Size) results in excessive TLB thrashing. To
circumvent this, the input data is partitioned in multiple passes (two is usually
sufficient). Each pass has a fanout less than or equal to the number of TLB
entries. Each pass looks at a different set of bits from the hashed value, hence
the name Radix Partitioning.

In addition to its cache-friendliness, the radix partitioning approach is easily
parallelized. The input relation is divided into horizontal partitions. In the first
pass, each part is scanned independently to generate a histogram over the input
data, so that the exact output size is known per thread per partition. A single
contiguous output array is allocated. A synchronization barrier is used to indicate
the end of first pass, at which point each thread computes the prefix-sum over the
relevant histograms to find the exact offset of each partition it writes to. Finally,
the threads execute a second pass over its partition of the data to write the

6 Anil Shanbhag, Holger Pirk, and Sam Madden

tuples to the right place in the output array, without any synchronization. We
end up having two passes over data per radix partition pass. For our evaluation
dataset, we require two radix partitioning passes i.e. four passes in total.

3.2 Using Atomics

To access the suitability of atomic instructions for parallel hash-building, we
implemented a shared hash table using the built-in C++11 atomics. The im-
plementation performs linear probing on insert and a single catch-all overflow
bucket that is used after checking a configurable number of slots. Note that,
while it is possible to implement a lock-free hash-table with bucket chaining,
the build-time overhead (most importantly creating an intermediary copy of a
bucket) is much higher than the catch-all scheme we implemented. The imple-
mentation is mostly straight forward with a single optimization: we first use an
atomic read to ensure the slot is empty, following which a compare-and-swap is
used to insert the tuple. The swap might fail if the slot has been filled by an-
other thread since the read was performed. We found that the benefits of cheap
checking to ensure a slot is free outweighs the cost for occasionally failing to
insert.

3.3 Hash-Function Design

Naturally, the selection of an appropriate hash-function is crucial when designing
a hash-table. The desirable property of uniform output distribution has to be
balanced against locality preservation and computational efficiency. The design
space ranges from cryptographic hash functions [11] that have near-perfect out-
put through efficient hashes such as Murmur Hashing1 to simple modulo hash-
ing. Different in-memory database systems took different decisions to address
this question: while HyPeR and Pivotal Gemfire/Apache Geode aim for skew-
resilience using Murmur Hashing, MonetDB implements the locality-preserving
and cheap modulo hashing. In this paper, we limit ourselves to modulo hash-
ing. We leave the development of a hybrid hash-function (preserving cache-line
locality while mitigating global skew) to future work.

4 Exploiting Locality using HTM

The hypothesis we want to establish and substantiate in this section is that is is
possible to develop a single pass hash table implementation that, given enough
locality in the input data, becomes (close-to) memory bandwidth bound. While
the ultimate goal of our efforts is an adaptive hash-join, we construct it “bottom
up”: by analyzing the impact of the relevant hardware- and data-characteristics.
We analyze the effects and costs of Virtual Memory (§4.2), Atomic Instructions
(§4.3), HTM overhead (§4.4) and the impact of locality (§4.5). Only after es-
tablishing the importance of these factors, do we develop our final contribution

1 https://sites.google.com/site/murmurhash

Locality-Adaptive Parallel Hash Joins using HTM 7

(§4.6 to §4.8): a hash-join implementation that adapts to the degree of locality
in the underlying data, using an HTM-based approach for high-locality and the
state-of-the-art partition-based approach [1] for low-locality data.

The key ingredient of our approach is the use of Intel’s Restricted Transac-
tional Memory (RTM). Before diving into the experiments and implementation,
however, let us briefly discuss our experimentation setup as well as the data-
structure we use for the hash-table.

4.1 Setup

To ensure comparability with previous work, we adopted the same workload as
previous work [1, 2]: unique keys (32 bit) carrying a 32 bit payload with ev-
ery tuple finding exactly one join-partner (Appendix B contains the results for
non-unique keys including conflict handling). Note that, while there is currently
some discussion about the prevalence of this specific case in practical applica-
tions, it constitutes a harder challenge than the case of larger payloads in which
copy overhead dominates the costs. We also feel that, in particular in highly-
optimized, column-oriented databases, small payloads are the rule, rather than
the exception.

The parameter we are interested in is the locality of the input: where previous
work applied a global (knuth-)shuffle to the input, we slide window through the
array and shuffle one value in the window per slide step - the size of the window is
the primary parameter of our experiments. This allows us to create data locality
ranging from fully sorted (window size 1) to fully shuffled (window size equal to
input size).

The structure of our hash-table is similar to that of bucket-chaining based
hash table implementations [1, 2]: insert conflicts are handled using buckets of
size three that are chained in a linked list on overflow. Later in Section 4.6 we
describe the full design with pseudocode. While bucket chaining is vulnerable
to inputs with a very high number of conflicts, we found that performance for
(non-unique) uniform random data is very similar to that of unique, shuffled
data (see Appendix B)

The experiments were run on a single socket Intel E3-1270 v5 @ 3.60GHz
(Skylake with 4 Cores, 8 hardware threads) fully equipped with 64GB DDR-
4 RAM (2133 Mhz bus clock) running Ubuntu Linux 15.10 (Kernel 4.2.0-30).
The input sizes were 134 million tuples (227) on each side, fitting comfortably
in main-memory. All experiments were compiled using gcc 5.2.1 using the “-O3
-march=native” flags and we report the average of 5 runs.

An interesting aspect to study, would be the interplay of HTM and NUMA.
Unfortunately, multi-socket CPUs that reliably2 implement RTM only became
available in early 2016 - too late to be included in this study. We did, however,
find a number of relevant, hitherto undocumented, effects that we describe in
the following.

2 Earlier implementations suffered from a bug that caused Intel to deactivate the
feature in a microcode update

8 Anil Shanbhag, Holger Pirk, and Sam Madden

4.2 Interaction with Virtual Memory

The first effect we noticed when developing our approach is the fragility of In-
tel’s transactional memory implementation with respect to the events that cause
transactions to abort. The hazardous effects of, e.g., the size of the working set
of the transaction or evictions due to associativity are well documented [14] and
are of little importance to us. However, in our experiments, we noticed an effect
that has substantial impact on our design: when accessing unmapped virtual
memory, transactions fail with no chance of success upon retry but without in-
dicating so using the respective status flags. This is due to the intricate interplay
of restricted transactional memory and lazy physical page allocation. When al-
locating zeroed-out memory using calloc, the Linux Kernel does not eagerly
allocate the memory and run a loop to initialize it. Instead, it maps all allocated
pages to a single, read-only page that is statically initialized to zero. Any write
to that page causes a page fault and subsequent copying of the read-only page
(copy-on-write). If the write is protected by a transaction, however, the page
fault immediately aborts the transaction without triggering the page fault. Con-
sequently, the read-only page is never copied and a retry of the transaction will
fail. This problem percolates to subsequent transactions on the page causing all
transactions to fail.

This effect has been reported in the context of updates to tree-indices [8]
and resolved by initializing pages using an atomic instruction before retrying a
transaction. In the case of hash-building, an alternative is to eagerly pre-fault
memory which avoids complex conflict handlers in the critical path. Unfortu-
nately this prevents some optimizations that are often applied to the process of
hash-building. Generously over-allocating the hash table is, e.g., an effective to
means deal with the unknown domain of input values. This optimization is no
longer feasible when the entire table has to be pre-faulted. We’re considering the
extension of our work to cases with unknown domains for future work.

4.3 Hardware Transactions vs. Atomics

To establish a baseline for the usefulness of hardware transactions, we started
by comparing them to their most direct competitor: atomic instructions. Note
that this comparison is not entirely apples to apples because Intel’s restricted
transactions are not guaranteed to succeed. However, we will show in the rest of
this section that, given enough locality, restricted transactions virtually always
succeed (fewer than one abort in 10,000 transactions) when protecting every
insert with its own transaction (denominated TS=1).

In Figure 2, we compare the cost of the two techniques in the extreme cases:
building a hash table using identity hashing on fully sorted or fully shuffled data.
The figure illustrates that protecting an insert using a hardware transaction
is, in fact, cheaper than using atomic instructions in both cases. This is to be
expected because Compare-and-Swap (used in atomic insert) is a more expensive
operation compared to an optimistic load and store. The reason for this lies in the
fact that the CPU has to guarantee that the write was actually performed. For

Locality-Adaptive Parallel Hash Joins using HTM 9

Sorted Shuffled
0

500

1000

1500

2000

2500

T
im

e
 i
n
 m

s

Atomic

HTM with TS=1

NoCC

Fig. 2: Transactional Memory vs. Atomic Instructions

that, it has to MESI-invalidate the cache line in all other cores and (potentially)
write it back to memory. This makes little difference in the sorted case (since
virtually no cache-lines are shared) but is substantial in the shuffled case because
cache-lines are frequently shared. However, using HTM is still significantly more
expensive than processing without concurrency control: around 5 times in the
sorted case and 20% on shuffled data. Consequently, we, turn our attention to
means to reduce the per-transaction cost next.

4.4 Transaction Overhead

100 101 102 103 104

Transaction Size

0

50

100

150

200

250

300

350

400

T
im

e
 i
n
 m

s

0

20

40

60

80

100

A
b
o
rt

 R
a
te

 (
in

 %
)

(a) Sorted Data

100 101 102 103

Transaction Size

0

200

400

600

800

1000

1200

1400

1600

T
im

e
 i
n
 m

s

0

20

40

60

80

100

A
b
o
rt

 R
a
te

 (
in

 %
)

(b) Fully Shuffled Data

Fig. 3: Assessing Per Transaction Overhead

It is natural to expect some overhead for setting up a transaction. This
overhead is, of course, relative to the cost for other operations. As established in
Figure 1 on page 2, locality in the input data, which translates into access locality
for the hash-buckets, is arguably the determining factor for overall performance.
Consequently, we assessed the overhead to protect hash-inserts by transactions

10 Anil Shanbhag, Holger Pirk, and Sam Madden

for the two extreme input data distributions: sorted (optimal locality) and fully
shuffled (least locality3), while varying the number of inserts per transaction.
The per-transaction overhead can, thus, be amortized over multiple inserts. The
results (Figure 3a and Figure 3b, respectively) show that, in the presence of
locality, the overhead of setting up a transaction for every insert is almost 4x4

and becomes apparent in the steep drop left of the plateau in Figure 3a. The
picture changes when considering fully shuffled data: while the overhead is still
significant, it is no longer the dominating cost factor (cache misses are).

However, larger transactions increase the chance of transaction aborts even if
there are no actual conflicts at CPU word granularity: factors such as suboptimal
cache associativity and context switching which lead to L1 cache evictions lead
to aborts. This effect can even be observed in the sorted data case (Figure 3a):
the abort rate starts to increase notably at around 64 inserts per transaction.
When the active set size grows beyond the size of the L1 cache, all transactions
abort - as expected.

For fully shuffled data (Figure 3b), the abort rate increases much earlier
as the inserts are spread out over many cache lines, which amplifies the active
set size and increases the probability of false conflicts. This naturally raises the
question of the impact of locality on performance and abort rate, which we study
in the following.

4.5 Impact of Locality

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Shuffle Window Size

27

28

29

210

211

T
im

e
 i
n
 m

s

TSize=1

TSize=8

TSize=64

(a) Time

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Shuffle Window Size

10-3

10-2

10-1

100

101

102

T
ra

n
sa

ct
io

n
s

Fa
ile

d
 (

in
 %

)

TSize=1

TSize=8

TSize=64

(b) Aborts

Fig. 4: Varied Size And Shuffle Window

To assess the impact of locality on the build performance and abort rate we
applied the same shuffle that was used to create Figure 1 to the input data and
evaluated the HTM-based implementation. In addition to the shuffle window

3 Note that fully shuffled unique data items have even worse locality than uniform uni-
form randomly generated (non-unique) data items because there is zero probability
for re-accessing a data item

4 the ratio is even higher for smaller datatypes

Locality-Adaptive Parallel Hash Joins using HTM 11

size, we varied the size of the transactions and measured build time (Figure 4a)
and abort rate (Figure 4b). Figure 4a re-iterates the point that, given enough
locality, larger transactions perform better. The point of the (inevitable) cost
explosion, however, is only slightly influenced by the transaction size.

Figure 4b, on the other hand, shows that the abort rate is strongly influenced
by the size of the transactions (as expected): transactions of size 1 rarely fail
when locality is high (left side of the chart) while larger transactions have a
significantly higher chance of failing. With less locality (right side of the chart),
the abort rate for all transaction sizes increases up to around two orders of
magnitude.

Note that these experiments did not include the retrying of transactions
and would, thus, not guarantee that values to actually get inserted into the
hash table. We will discuss an implementation without that shortcoming in the
following.

4.6 Putting It Together

The last step to providing a full hash-build implementation is to develop a strat-
egy to deal with aborted transactions. For that purpose, we simply record the
input position range associated with the aborted transactions in a preallocated
buffer while building the hash table. We also record the tuples that landed in
full buckets in an overflow buffer. When the build-phase is complete, we per-
form a wrap-up phase that traverses the abort- and overflow-buffers, resolves
the positions and inserts the values into the hash table. Note that the bucket
chaining happens only in the wrap-up phase, we do not do bucket chaining in
the transactions to keep their cache line footprint small. The pseudocode of the
full implementation is given in Figure 5.

We found that it is not worth parallelizing the wrapup phase due to its
unique characteristics: for high-locality data, its cost are insignificant relative to
the overall runtime because there are few failed transactions. For low-locality
data, the cost of the wrap-up phase is dominated by cache- and TLB-thrashing,
leaving even a single CPU core mostly idle.

With the wrap-up in place, the hash-build implementation is complete. As
established, however, optimal performance hinges on the appropriate selection of
the transaction size. To remove transaction size as a tuning parameter we adopt
a simple adaptation strategy: we start with a transaction size of 16, monitor
the abort rate and define a high- and a low-watermark. When the abort rate
exceeds the high-watermark we half the transaction size, when it drops below
the low-watermark we double it. We found 0.4% to be a good low and 2% a good
high watermark and check every 16× 1024 inserts.

Figure 6 shows the total runtime of the static transaction sizes as well as our
adaptive approach (TSize-Adaptive). Note how the adaptive approach matches
the performance of the best static case and occasionally outperforms them, se-
lecting optimal parameters between the static values.

We experimented with varying number of threads and noticed that the per-
formance does not improve after 3 threads, indicating that the application is

12 Anil Shanbhag, Holger Pirk, and Sam Madden

struct Bucket:

Tuple tuples[3]

int count

int nextBucketIndex

HashTable table

table.buckets = Bucket[ceil(numTuples/3)]

// Each thread gets an input range [start,end)

for (i = start; i<end; i += transactionSize):

status = _xbegin()

if status == _XBEGIN_STARTED:

for (j = i; j < i + transactionSize; j++):

slot = hash(tuple[j].key)

for (k = slot; k < slot + probeLength; k++):

if table.buckets[k] is not full:

table.buckets[k].add(tuple); break

if not inserted:

overflow.add(tuple)

xend()

else: // Transaction Failed

failedTransactionRanges.add(i)

// Wrap-Up

for (i in failedTransactionRanges)

// Insert tuples[i] to tuples[i + transactionSize]

for (i in overflow)

// Insert overflow[i]

Fig. 5: HTM-Enabled Hash-Building

memory-bound. While hyper-threading is expected to increase cache contention,
we did not observe any significant difference in performance with 4 thread (one
per core) and using all 8 threads. This is because the adaptive approach used in
TSize-Adaptive adjusts the transaction size to keep the abort rates low and the
application remains memory-bound.

4.7 Fallback for fully shuffled data

When there is sufficient locality in the data, our adaptive approach performs
best. However, for large shuffle windows, the radix-partitioned approach is still
more efficient. Fortunately, as can be see in Figure 4b, the large shuffle windows
coincide with high transaction abort rates. We use this insight to develop a
hybrid approach that falls back to the radix-partitioned approach when it detects
poor locality. We implement this in a straight-forward manner: we use the first
16×1024 tuples of each thread for training and inspect the average abort rate at

Locality-Adaptive Parallel Hash Joins using HTM 13

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Shuffle Window Size

27

28

29

210

211

T
im

e
 i
n
 m

s

TSize=1

TSize=8

TSize=64

TSize-Adaptive

HTM-Adaptive

Fig. 6: Adaptive Hash Building (Including Wrap-up)

the end of the training phase5. If the abort rate exceeds a threshold (we found
4% to be appropriate in our experiments), we fall back to the radix-partitioning
implementation. The training phase runs on a small subset of tuples and hence
the overhead (about 4ms when using 8 threads) is negligible. Figure 6 shows
how the adaptive approach with fallback (HTM-Adaptive) effectively adapts to
the data distribution. While our approach does not currently deal with skewed
data locality, the identical data structure format of the two approaches make
the development of a fully adaptive strategy straight forward.

4.8 Probing

To assess the impact of the presented optimizations on the performance of a
full join, we also evaluated performance including the probe phase (counting
the number of matches). Note that parallelizing the probe itself is usually not
difficult because it does not modify the hash table. However, probe performance
is, just as build performance, affected by data access locality. Just like the build,
the probe can, therefore benefit from a pre-partitioning step if the tuples are
partitioned according to their hashes (or an approximation thereof). Since this
effect is independent of the way the hash table is built, we only evaluated the
probe using input data with perfect locality (i.e., sorted input data).

In Figure 7, we present the final result of our efforts: an adaptive hash-
join implementation using HTM abort rate as runtime feedback variable. The
figure illustrates the performance of the full join: build and probe (labeled HTM-
Adaptive). It shows that, while our implementation effectively falls back to par-
titioning the input if locality is low, it outperforms the partitioned approach by
more than 3x when locality is high.

For reference, we also included the results of a fully parallel sort-merge join
and the Non-Partitioned Join implementation that was used for comparison by
Balkesen et al. [1] (labeled ”NPJ” in the figure).

5 We considered breaking it down by abort code but found no useful correlation (see
Appendix A)

14 Anil Shanbhag, Holger Pirk, and Sam Madden

20 22 24 26 28 210 212 214 216 218 220 222 224 226

Shuffle Window Size

27

28

29

210

211

212

T
im

e
 i
n
 m

s

Sort-Merge

PRJ

NPJ

HTM-Adaptive

NoCC

Fig. 7: Full Hash Join (Build and Probe)

The sort-phase of the sort-merge join is based on Timsort [10] which is de-
signed to work well an almost-sorted data. We observe that, only for data that
is perfectly sorted (shuffle window size equal to 1) does the sort-merge join out-
perform our adaptive implementation.

The Non-Partitioned Join was implemented (by Balkesen et al.) using per-bucket
spinlocks. As apparent in Figure 7, NPJ performs about 42% worse than HTM
for sorted data but degrades in performance once randomness (and thus con-
tention) increases. The reason is two-fold: firstly, the use of spinlocks instead of
HTM leads to a 14% slowdown. Second, in NPJ, the locks are co-located with
the tuples in the buckets which increases the memory footprint of the resulting
table. The HTM approach does not use locks, hence is able to fit 3 tuples per 32
byte bucket compared to 2 tuples in the case of NPJ, which results in another
25% speed-up. Finally, and most apparently, the implementation is not adaptive
which can be seen by the performance for inputs with low-locality.

5 Conclusion

Locality in input data is an important, yet often underutilized, factor when devel-
oping and selecting appropriate implementations of data management operators.
We demonstrated how the state-of-the-art parallel hash join implementations fail
to recognize and exploit locality of the input data. To mitigate that problem,
we developed an adaptive hash join implementation that uses hardware trans-
actional memory to protect inserts into a shared hash table. We recognized the
number of inserts per transaction as the most important performance factor and
adaptively tune this parameter at runtime. In addition, our implementation rec-
ognizes input data with poor locality and automatically falls back to the current
state-of-the-art: parallel radix-partitioned hash joins. The result is a hash join
implementation that is more than 3 times faster than the state-of-the-art on
high-locality data and never more than 1% slower.

Locality-Adaptive Parallel Hash Joins using HTM 15

References

1. Balkesen, C., et al. Main-memory hash joins on multi-core cpus: Tuning to the
underlying hardware. In ICDE (2013).

2. Blanas, S., Li, Y., and Patel, J. M. Design and evaluation of main memory
hash join algorithms for multi-core cpus. In SIGMOD (2011).

3. Hennessy, J. L., and Patterson, D. A. Computer architecture: a quantitative
approach. Elsevier, 2011.

4. Herlihy, M., and Moss, J. E. B. Transactional memory: Architectural support
for lock-free data structures. ACM, 1993.

5. Jacobi, C., Slegel, T., and Greiner, D. Transactional memory architecture
and implementation for ibm system z. In MICRO (2012).

6. Kim, C., et al. Sort vs. hash revisited: Fast join implementation on modern
multi-core cpus. VLDB (2009).

7. Leis, V., Kemper, A., and Neumann, T. Exploiting hardware transactional
memory in main-memory databases. In ICDE (2014).

8. Makreshanski, D., Levandoski, J., and Stutsman, R. To lock, swap, or elide:
On the interplay of hardware transactional memory and lock-free indexing. Pro-
ceedings of the VLDB Endowment 8, 11 (2015), 1298–1309.

9. Manegold, S., Boncz, P., and Kersten, M. Optimizing main-memory join on
modern hardware. TKDE (2002).

10. Peters, T. Description of timsort. http://bugs.python.org/file4451/timsort.txt.
11. Rogaway, P., and Shrimpton, T. Cryptographic hash-function basics: Def-

initions, implications, and separations for collision resistance. In International
Workshop on Fast Software Encryption (2004).

12. Shavit, N., and Touitou, D. Software transactional memory. Distributed Com-
puting (1997).

13. Tran, K. Q., Blanas, S., and Naughton, J. F. On transactional memory,
spinlocks, and database transactions. In ADMS (2010).

14. Yoo, R. M., et al. Performance evaluation of intel R© transactional synchroniza-
tion extensions for high-performance computing. In SC (2013).

16 Anil Shanbhag, Holger Pirk, and Sam Madden

A Transaction Abort Breakdown

When studying the pseudocode of our approach in Section 4.6, a reader may note
that one might use the status code to determine the reason for aborted trans-
actions and use this as runtime feedback. Figure 8 shows a breakdown of the
reason for aborts observed with when running the TSize-Adaptive implementa-
tion (when varying the shuffle window size). Capacity aborts occur if transaction
working set exceeds L1 cache size or if more than A cache lines of the same cache
set are accessed, where A is the L1 cache associativity. Conflict abort happens
if two transactions read/write sets overlap. The main reason we cannot use this
information as runtime feedback is that most transaction aborts have return
code set to 0, i.e., giving no information about the reason for abort (RC = 0
line) and degree of noise is high for the other return codes.

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Shuffle Window Size

22

24

26

28

210

212

214

216

218

220

Fa
ile

d
 T

ra
n
sa

ct
io

n
s

Total

Conflict/Retry

Capacity

RC=0

Fig. 8: Reason for Transaction Abort

20 22 24 26 28 210 212 214 216 218 220 222 224 226 228

Shuffle Window Size

28

29

210

T
im

e
 i
n
 m

s

PRJ

HTM-Adaptive

Fig. 9: Processing uniform random data

B Non-Unique Inputs

While we consider the problem of efficient conflict handling out of scope of this
paper, we still consider it important to establish that the presented techniques
do not prevent conflict handling. To illustrate this, consider Figure 9 which
corresponds to Figure 7 run on uniform randomly generated integers in the
domain 1 to n (the size of the input) which, naturally, includes duplicate values.
As in Figure 7, the experiment is to perform the full join but only counting the
number of matches. As stated in Section 4, we use bucket-chaining to handle
overflows of the buckets and re-inserting to handle aborted transaction. The
figure shows a similar pattern to Figure 7 but exposes a suboptimal configuration
of the threshold for switching to the radix-partitioned implementation. This
indicates that a conflict-aware fallback strategy may be worthwile.

