
A Shape changing Storage System
for Big Data

Anil Shanbhag, Alekh Jindal, Yi Lu, Samuel Madden

The Problem !
u Data partitioning is important !

u Modern analytic applications involve ad-hoc/
exploratory analysis. There is no fixed workload or it
change over time.

u Static workload-based partitioning fails

u Enter Amoeba !

Our Approach

It uses an adaptive data partitioning approach
which does not require an upfront workload and
adapts to the user queries.

In block-based systems like
HDFS, files broken into blocks
(128 MB chunks)

Upfront Partitioning

Instead of partitioning by size,
partition by attributes.
Same number of blocks created
as in HDFS. Each block now
has additional metadata

Distribute partitioning effort
across attributes based on
Allocation A <= 5 and B <= 7

Adaptive Re-Partitioning

When user submits a query,
optimizer tries to improve the
partitioning by reorganizing
the tree
partitioning
Here if queries ask A <= 3
many times, replace B7 by
A3

Done on datasets which are O(TB) with ~
> 8000 node partition trees.

Amoeba

Allocationj (average partitioning of an attribute j) = 𝛴 nij cij
nij is number of ways node i partitioned on attr j
cij is the fraction of data this applies to

Cost
Model

Repartitioning ONLY happens when reduction in the total cost
of the query workload is greater than re-partitioning cost.

Put	 on	 your	 Data	 Analyst	 Hat	

(1) At what point should we re-partition the data ?

Use the robust/reactive knob to control
reactiveness to changes in workload

(2) See improved time-to-first-query

With no information, why does a ad-hoc query
like trip length ⊂ (1,2) run 2x faster with Amoeba

(3) Runtime gains over sequence of queries

See how multi-dimensional adaptivity matches
against static-partitioning schemes

Using a stream of ad-hoc queries on an Internet-of-
Things dataset, examine the trade-offs involved with

using Amoeba vs a static storage system

Amoeba is a relational storage system on top of
HDFS (like Hive / Parquet) for the Hadoop
ecosystem

