
A	Robust	Partitioning	
Scheme	for	Ad-Hoc	
Query	Workloads	

ANIL	SHANBHAG
MIT

J/W	Alekh Jindal,			Sam	Madden,	 Jorge	Quiane,	 Aaron	J.	Elmore	
Microsoft															MIT		 QCRI			 Univ.	Chicago



Today

Data	collection	is	cheap	=>	Lots	of	data	!	



Data	Partitioning

Find	average	order	size	for	all	orders	between	Sept	10	and	Sept	11,	2017

Data	Skipping - Skip	data	blocks	not	necessary

10%	selectivity	query	=>	10x	faster	if	data	partitioned	on	selection	predicate

Order	date



The	Problem

Analytics

Ad-Hoc/Exploratory
Analysis

Recurring	
Workloads

+

Focus	of	existing	work

Give	workload		=>	
Return	partitioning	layout

Problems:
1. Tedious	to	collect	workload
2. May	not	be	known	upfront
3. Changes	over	time

How	to	get	benefits	of	partitioning	in	this	case	?



Our	Approach

Do	everything	adaptively	!	

Two	step	process:
1. Upfront	load	the	dataset	partitioned
2. As	users	query,	incrementally	improve	the	

partitioning	of	the	data



Distributed	storage	systems	like	HDFS,	files	
broken	into	blocks	(128	MB	chunks)

A	<=	5	and	B	<=	7

Upfront	Partitioning

>	Instead	of	partitioning	by	size,	partition	
by	attributes.		
>	Same	number	of	blocks	created	as	in	
HDFS.	Each	block	now	has	additional	
metadata



Adaptive	Re-Partitioning

When	user	submits	a	query,	optimizer	tries	to	
improve	the	partitioning	by		reorganizing	the	
partitioning	tree

Here	if	queries	ask	A	<=	3	many	times,	replace	
B7 by	A3

Done	on	datasets	which	are	O(1TB)	with	~	8000	
node	partition	trees.	



System	Architecture
Predicated	Scan	Query	
Example:

FIND	employees	WITH
Age	<	30	AND
20k	<	Salary	<	40k1 2



1.	Upfront	Partitioner
Goal:	Generate	a	partitioning	tree	

WITHOUT	an	upfront	query	workload

>	Generates	a	tree	with	heterogeneous	branching

>	Balance	the	partitioning	benefit	across	all	
attributes

!

" #

$

! " !



Allocation
Goal: Balance	partitioning	benefit	across	attributes

Allocationof	attribute	i ~	average	partitioning	of	an	attribute	j		

= 𝛴all nodes i nij cij

Upfront	Partitioning	
Algorithm

Attribute
Allocations

Partitioning	
Tree

Uniform	if	no	workload	information
Weighted	if	we	have	prior	workload
information



2.	Adaptive	Query	Executor
Goal:	Return	matching	tuples	+	check	if	partitioning	layout	can	be	improved

Alternatives	found	via	transformations	on	the	partitioning	tree

1.	Swap	Rule

2.	Pushup	Rule 3.	Rotate	Rule



Getting	a	plan



Cost	Model
The	system	maintain	a	window	W	of	past	queries	

Compute	Benefit	and	Repartitioning	Cost	for	the	
best	plan

Repartitioning	ONLY happens	when	reduction	in	
the	total	cost	of	the	query	workload	is	greater	
than	re-partitioning	cost.

Solves	constant	re-partitioning	due	to	random
query	sequences	and	bounds	the	worse	case	
impact.



Performance

4	metrics

1)	Load	time

2)	Time	taken	by	first	query

3)	Aggregate	runtime	over	a	workload

4)	Incremental	improvement	with	workload	hints



Load	Time
TPC-H:	Scale	Factor	200	+	De-normalized.	Data	size:1.4TB

Loading	performance:	 1.38	times	slower	than	HDFS

Load	time	scales	almost	linearly	
with	data	size	and	independent	of	number	of	columns



Time	taken	by	first	query

On	Average:	45%	better	than	full	scan
20%	better	than	k-d	tree



Aggregate	Workload	Runtime

0
400
800

1200
1600
2000

0
400
800

1200
1600
2000

0
400
800

1200
1600
2000

0 25 50 75 100 125 150 175 200
4uery 1o

0
400
800

1200
1600
20007i

m
e 

7a
Ne

Q 
(iQ

 s
)

full scaQ raQge raQge2 Amoeba
Workload:	200	Queries	generated	from	
random	initialization	of	8	query	templates	of	
TPC-H	benchmark

full	scan – Baseline

range – partitions	on	orderdate (1	per	date)
1.88x	better

range2	– partitions	on	orderdate(64),	
r_name(4),c_mktsegment(4),quantity(8)
3.48x	better

Amoeba	– 3.84x	better	than	baseline



Workload	Hints

0
400
800

1200
1600
2000

0 25 50 75 100 125 150 175 200
4uery 1o

0
400
800

1200
1600
2000

7i
m

e 
7a

Ne
Q 

(iQ
 s

)

default better iQit
Better	Init:
Starts	with	custom	allocation	to						
mimic	range2

6.67x	better	than fullscan

Filtering	ratio:
default	:	0.81
better	init :	0.9



Conclusion
•Amoeba is	a	distributed	storage	system	based	on	an	adaptive	data	
partitioning	scheme
• Low	loading	overhead
• Improved	first	query	performance
• Adapt	to	changes	and	significantly	improvement	to	workload	runtime
• Can	exploit	workload	hints

•Allows	analysts	to	get	started	right	away	and	reap	benefits	of	
partitioning	without	an	upfront	workload


