
Efficient	Top-K	Query	Processing	on	
Massively	Parallel	Hardware	
ANIL	SHANBHAG,	HOLGER	PIRK,	SAM	MADDEN

1



CPU
16-24	Cores

Main	Mem
128-256GB

GPU	Mem
12-32GB

GPU
~5000	Cores

250-900	GB/s60	GB/s

16-40	GB/s	

2



Top-K

SELECT id FROM tweets WHERE tweet_time ∈ [X,Y] 
ORDER BY retweet_count + 0.5*likes_count DESC LIMIT K

Typical K is 5-100

3



Top-K

Classic	Sequential	Algorithm:
Use	a	min-heap	of	size	k	to	maintain	the	top-k	items		

7

15 20

21 504032

4



Partition	and	Merge

Core Core Core

On	Multi-core	CPU:	Partition	data

5

Merge	Results



On	GPU
Does	not	work	well	on	GPU	execution	model

PROBLEMS	!	

• Significant	thread	divergence

……

Warp	of	Threads

6

• Maintaining	heap	of	size	k	per	thread	limits
performance



7

Intuition

Sort	+	Top-K Heap	Per-Thread Radix-Select Bucket-Select

Priority Queue ???

Heap	Sort Bitonic	Sort

ParallelSequential

Top-K

Sort

Bitonic	Top-K



Bitonic	Top-K

8



Bitonic	Sequence

Sequence	S	=	<a0,	a1,	a2 … an-1>	such	that
• a0 ≤ a1 ≤ ..	≤ ak
• ak+1 ≥	ak+2 ≥	...	≥	an-1

9

Two	monotonic	sequences



10

S1 and	S2 are	both	bitonic
S1 <	S2 :	Every	element	in	S1 is	smaller	than	any	element	of	S2

Bitonic	
Merge

Sort	Entire	Sequence	->	log(n)	rounds.

S1 =	<min(a0,	an/2),	min(a1,	an/2+1),	...	min(an/2-1,	an-1)>

S2 =	<max(a0,	an/2),	max(a1,an/2+1),	...	max(an/2-1,	an-1)>

Apply	recursively	on	S1 and	S2 =>	

From	S1 From	S2

< < <



Bitonic	Sort

Phase
Step

1

1 2 1

2 3

4 2 1
0
1
2
3

4
5
6
7

Complexity:	O(n(logn)2)

11



Unsorted	Sequence

Finding	Top-4	in	16	elements

Sorted	Sequences	of	length	k

Merge	neighboring	sorted	sequences	of	length	k
To	select	largest	k	elements	(bitonic sequence)

Sort	bitonic sequence	of	length	k

Result	top-k

When	list	size	=	k

12

Phase	1	:	Local	Sort

Phase	2:	Merge

Phase	3:	Rebuild

Len
Inc

1
1 2 1

2
2 1

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

v

2 1

P2:	Merge P3:Rebuild

v

P1:	Local	Sort P3:	Rebuild

v

P2:Merge
2 2

Bitonic Top-K
Complexity:	
O(n(logk)2)



On	the	GPU

Simplest	way	to	partition	into	kernels:
Each	column	has	a	kernel	invocation

Each	thread	does	1	comparison
n/2	comparisons	needed	=>	n/2	threads	launched

Naive

Sort

521ms

130ms

Time	to	find	top-32	in
sequence	of	size	229

Final 14.5ms

One	Pass 10ms

13



Optimizations

14



15

Optimizations

Global	Memory

Shared	Memory

Registers

260	GBps

Upto
3.5	TBps

SM-1

Registers

L1 SMEM

SM-2

Registers

L1 SMEM

SM-N

Registers

L1 SMEM

L2	Cache

Global	Memory
Off chip
On chip



Optimization	1:	
Using	Shared	Memory

��� ��

��� ��

�� �� ��� ��� ���

�����

������

���� �� ��

Time	to	find	top-32	in
sequence	of	size	229

For	thread	block	with	T	threads,
load	2T	elements	into	
shared	memory

16

Shared	memory	
access

Global	memory	
access



Instead	of	loading	2T,	
lets	load	8T	elements	and	
combine	the	5	phases

Optimization	2:
Combining	Phases

���� ��

��� ��

�� �� ��� ��� ���

�����

������

���� �� ��

17

Shared	Memory	
Bandwidth	Bound

Shared	memory	
access

Global	memory	
access



Optimization	3:
Combining	Steps

4 2 1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

One	step	at	a	time	 Three	steps	at	a	time	

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

4 2 1
0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

Shared	memory	
access

18



Optimization	4:
Padding

���� ��

���� ��

�� �� ��� ��� ���

�����

������

���� �� ��

0 1 2 3 4 5 6 7
Memory	Bank

Address

0 1

X 2 3

X 4 5

X 6 7

0 1 2 3 4 5 6 7
Memory	Bank

Address

Thread	
Access

Unused	Cell

Before	Padding

After	Padding

2 1

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

0 1
3

5
7

2
4

6

19



0 1 2 3 4 5 6 7

Padded	Cell

0 1 2 3 4 5 6 7

Optimization	5:
Chunk	Permutation

0
1
2
3

4
5
6
7

8
9

10
11

12
13
14
15

4

20

Step 1 2 1 4 2 1
0
1
2
3
4
5
6
7

Before

After

17.8ms

16ms



Evaluation

21



Setup

Intel	i7
16	Cores

Main	Mem
64GB

GPU	Mem
12	GB

Titan	X

60	GB/s

16	GB/s	

260	GB/s

22



For	2^29	(1/2	billion)	floats	from	U(0,1)

Varying	K

23



Varying	Distributions

24



SELECT id FROM tweets WHERE tweet_time < X 
ORDER BY retweet_count DESC LIMIT 50

Integration	

Dataset:	250	million	tweets	May	2017

4.5	x	Faster

25



Conclusion

Data	analytics	on	GPUs	increasingly	common	and	Top-K	on	GPU	non-trivial

Bitonic	Top-k:	Novel	Top-K	algorithm	for	GPU
◦ Distribution	Independent
◦ Best	performing	for	K	<=	256

Integrated	into	a	real	database	- >4x	performance	improvement

26


